2-Cyano-2-isocyanoalkanoates in Multicomponent Reactions

by Stefan Müller and Richard Neidlein*

Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg

Dedicated to Professor Dr. Dr. h. c. mult. Siegfried Hünig on the occasion of his 80th birthday

The reactivity of 2-cyano-2-isocyanoalkanoates 2 in multi-component reactions was investigated, *i.e.*, in the *Passerini* reaction and the *Ugi*-four-component condensation (see *Schemes 2* and 3, resp.). Interestingly, the structure of the 2-cyano-2-isocyanoalkanoates 2 strictly limited the possible starting materials. Only the combination of aliphatic aldehydes, halogenated acetic acid derivatives, and nonaromatic amines gave satisfactory results, *i.e.*, provided depsidipeptides 5 (*Tables 3* and 4) and depsitripeptides 9 (*Tables 6*), respectively. Some of the products of the multicomponent reactions were transformed into crystalline compounds by decarboxylation (see *Scheme 4*). After fractional crystallization, the molecular structure of one of the decarboxylated depsitripeptides, *i.e.*, of 10, was established by X-ray crystallography.

Introduction. – In previous publications, our group reported the synthesis of 2cyano-2-isocyanoalkanoates **2** [1] (*Scheme 1*), their application to the preparation of 5,5-disubstituted 2,4-dithiohydantions [2], and their use as versatile synthons for the assembly of imidazoles [3].

To further explore the reactivity of compounds of type **2**, we decided to investigate the role of **2** as key compound in multicomponent reactions, for example the *Passerini* reaction [4] or the *Ugi*-four-component condensation (Ugi-4CC) [5].

Results and Discussions. – Different new 2-cyano-2-isocyanoalkanoates **2** were synthesized according to [1] with the aim to study their behavior in multicomponent reactions (*Table 1*). Thus, the multicomponent *Passerini* reaction was investigated and optimized with a mixture of *tert*-butyl α -cyano- α -isocyano-4-methylbenzenepropanoate (**2a**), chloroacetic acid (**3**), and 2-methylpropanal (**4**) under different conditions leading to **5** (*Scheme 2*). As the solvent, CH₂Cl₂ was used, and the ratio of **3/4/2a** was

Scheme 2. Model Reaction for the Passerini Reaction with 2-Cyano-2-isocyanoalkanoates 2

Table 1. 2-Cyano-2-isocyanoalkanoates 2 Used in the Multicomponent Reactions (cf. Scheme 1)

	\mathbb{R}^1	\mathbb{R}^2
2a	$4 - Me - C_6H_4 - CH_2$	'Bu
2b	$4-Me-C_6H_4-CH_2$	Et
2c	$4 - F - C_6 H_4 - C H_2$	'Bu
2d	$4 - F - C_6 H_4 - C H_2$	Et
2e	$4 - MeO - C_6H_4 - CH_2$	^t Bu
2f	$4 - NO_2 - C_6 H_4 - CH_2$	Et
2g	$4-NO_2-C_6H_4-CH_2$	'Bu
2h	$4-Cl-C_6H_4-CH_2$	Et
2i	$4-Cl-C_6H_4-CH_2$	'Bu
2j	$4-Bu-C_6H_4-CH_2$	'Bu
2k	$C_6H_5-CH_2$	'Bu
21	Et	'Bu

chosen as 1.5:1.5:1, because, for other *Passerini* reactions, these conditions were shown to be optimal [6].

The model reaction was optimized at different temperatures (*Table 2*). Stirring the mixture for 2 h at 0° and then for 48 h at room temperature appeared to be the best compromise between the thermolability of the 2-cyano-2-isocyanoalkanoates **2** and the necessary activation of the components. The solvent is a critical parameter for good yields in multicomponent reactions. Because compounds **2** are stable for a longer time only in CH₂Cl₂, the use of other solvents was not possible. Therefore, mixtures of CH₂Cl₂ and other solvents had to be used. As shown in *Table 2*, CH₂Cl₂ or mixtures of CH₂Cl₂/MeOH, depending on the solubility of the starting materials, were optimal.

 Table 2. Optimization of Reaction Conditions of the Passerini Reaction of 2a, 3, and 4 Yielding 5 (see Scheme 2);

 Variation of the Temperature and Reaction Time (CH₂Cl₂) and Variation of the Solvent

Temperature [°]	0	0	0	0	0	$0, 25^{a}$)	$0, 25^{a}$)	$0, 25^{a}$)	0, 25 ^b)	0, 25 ^b)	0, 25 ^b)
Time [h]	6	12	24	48	72	$6, 12^{a}$)	$6, 24^{a}$)	6, 48 ^a)	2, 24 ^b)	2, 48 ^b)	2, 72 ^b)
Yield [%]	10	11	17	25	27	22	32	51	56	68	68
Solvent	CH_2Cl_2	CHCl ₃	MeOH	EtOH	ⁱ PrOH	MeCN	AcOH	CH ₂ Cl ₂ /M	eOH 1:1	CH ₂ Cl ₂ /M	eOH 3:1
Yield [%]	68	53	65	61	48	27	62	65		68	
^a) 6 h at 0° and then 12, 24, or 48 h at 25° . ^b) 2 h at 0° and then 24, 48, or 72 h at 25° .											

Finally, the influence of the acid and the carbonyl compound on the *Passerini* reaction with **2** was investigated. For this purpose, the reactions were carried out under the optimized conditions, changing the acid, **2**, and the carbonyl compound. The success of these reactions depended on all three components: ketones and aromatic aldehydes did not react at all (*Tables 3* and 4). Good yields were obtained only with aliphatic aldehydes, which can be explained by steric hindrance. The influence of the acid component is possibly similar. Only acids exerting low steric hindrance, such as halogenated acetic acid derivatives, resulted in high yields. The dependency of the *Passerini* reaction on the substituent R⁴ of **2** was relatively low compared to the other two components: compounds with R⁴ = ArCH₂ gave slightly better yields than the ones with R⁴ = Et. The *tert*-butyl esters produced higher yields and crystallized easier than the ethyl esters. In summary, the best results in the *Passerini* reaction were obtained with an aliphatic aldehyde, a halogenated acetic acid, and a 4-substituted *tert*-butyl *a*-cyano-*a*-isocyanobenzenepropanoate.

	R ¹	R ²	R ³	\mathbb{R}^4	Yield [%]
	CH ₂ Cl	Me	Me	$4 - Me - C_6H_4 - CH_2$	0
	CH ₂ Cl	Ph	Me	$4-Me-C_6H_4-CH_2$	0
	CH ₂ Cl	CCl ₃	CCl ₃	$4-Me-C_6H_4-CH_2$	0
	CH ₂ Cl	Ph	Н	$4-Me-C_{6}H_{4}-CH_{2}$	0
	CH ₂ Cl	Ph	Me	$4 - Me - C_6H_4 - CH_2$	0
5a	CH ₂ Cl	Et	Н	$4 - Me - C_6H_4 - CH_2$	27
5b	CH ₂ Cl	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	26
5c	CF ₃	Me ₂ CH	Н	$4-Me-C_{6}H_{4}-CH_{2}$	28
5d	$4-NO_2-C_6H_4-CH_2$	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	23
5e	CHCl ₂	Me ₂ CH	Н	$4 - F - C_6 H_4 - C H_2$	27

Table 3. Depsidipeptides 5 Prepared from Ethyl 2-Cyano-2-isocyanoalkanoates ($R^5 = C_2 H_5$)

All obtained depsidipeptides **5** crystallized as long pale needles. Because an additional chiral center was formed during the *Passerini* reaction with the asymmetric **2**, compounds **5** were mixtures of two diastereoisomers (NMR). The diastereomeric compounds could be separated by fractional crystallization from Et₂O followed by column chromatography (SiO₂/CH₂Cl₂). Unfortunately, the separated diastereoisomers did not yield crystals suitable for X-ray crystal-structure analysis, thus preventing the determination of their configurations by this means.

The second investigated reaction, the Ugi-four-component condensation (Ugi-4CC), was elaborated by Ugi in 1959 [7]. This reaction furnishes a tripeptid starting

	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Yield [%]
	CH ₂ Cl	Me	Me	$4-Me-C_6H_4-CH_2$	0
	CH ₂ Cl	$PhCH_2$	Me	$4 - Me - C_6H_4 - CH_2$	0
	CH ₂ Cl	CCl ₃	CCl ₃	$4 - Me - C_6H_4 - CH_2$	0
	CH ₂ Cl	Ph	Н	$4 - Me - C_6H_4 - CH_2$	0
	CH ₂ Cl	Ph	Me	$4-Me-C_6H_4-CH_2$	0
5f	CH ₂ Cl	Me ₂ CH	Н	$4-Cl-C_6H_4-CH_2$	61
5g	CH_2F	MeCH	Н	$4 - Me - C_6H_4 - CH_2$	39
5h	CH_2Br	Me ₂ CH	Н	Et	30
5i	CH ₂ Br	Me ₂ CH	Н	$4-Cl-C_6H_4-CH_2$	51
5j	CH_2Br	Et	Н	$4 - Me - C_6H_4 - CH_2$	49
5k	CH_2I	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	63
51	CH_2I	Et	Н	PhCH ₂	46
5m	CH_2I	Me ₂ CH	Н	PhCH ₂	53
5n	CH_2I	Me ₂ CH	Н	$4-Cl-C_6H_4-CH_2$	57
50	CH_2I	Me ₂ CH	Н	$4-MeO-C_6H_4-CH_2$	50
5p	CH_2I	Me	Н	PhCH ₂	36
5q	CH ₂ CN	Me ₂ CH	Н	PhCH ₂	27
5r	CHCl ₂	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	58
5s	CHCl ₂	Et	Н	$4-NO_2-C_6H_4-CH_2$	55
5t	CHCl ₂	Me ₂ CH	Н	$4-NO_2-C_6H_4-CH_2$	58
5u	CHCl ₂	Me ₂ CH	Н	$4-MeO-C_6H_4-CH_2$	53
5v	CHCl ₂	Me ₂ CH	Н	$4 - F - C_6 H_4 - C H_2$	60
5w	CHCl ₂	MeCH ₂ CH ₂	Н	$4-F-CH_4-CH_2$	53
5x	CHCl ₂	Me ₂ CH	Н	Et	45
5у	CCl ₃	Me ₂ CH	Н	$4-NO_2-C_6H_4-CH_2$	38
5z	CF ₃	Me ₂ CH	Н	PhCH ₂	33
5aa	CF ₃	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	38
5ab	$Me_2C(OH)$	Me ₂ CH	Н	$4 - F - C_6 H_4 - C H_2$	7
5ac	$4 - F - C_6 H_4 - C H_2$	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	22
5ad	$4 - F - C_6 H_4 - C H_2$	Me ₂ CH	Н	$4-NO_2-C_6H_4-CH_2$	28
5ae	$4 - F - C_6 H_4 - C H_2$	Et	Н	Et	17
5af	$4-NO_2-C_6H_4-CH_2$	Me ₂ CH	Н	PhCH ₂	35
5ag	$4 - NO_2 - C_6H_4 - CH_2$	Me ₂ CH	Н	$4 - Me - C_6H_4 - CH_2$	23
5ah	$4 - NO_2 - C_6H_4 - CH_2$	Me ₂ CH	Н	Et	11

Table 4. Depsidipeptides 5 Prepared from tert-Butyl 2-Cyano-2-isocyanoalkanoates ($R^5 = {}^{t}Bu$)

with an amino component, a carbonyl compound, an acid, and an isocyanide. The success of the reaction depends on the starting materials used. Investigations with **2** similar to those described for the *Passerini* reaction allowed us to establish the conditions for a successful transformation to depsitripeptides in an *Ugi-4CC*. Thus, the temperature and the solvents were optimized with the mixture of *tert*-butyl 2-cyano-2-isocyanobutanoate (**2**), propanamine (**6**), 2-methylpropanal (**7**), and iodoacetic acid (**8**) (*Scheme 3*). The ratio of **21**:6:7:8 was chosen as 1.5:1.5:1.5:1, as in most of the *Ugi-4CCs* [8]. First, the reactions were carried out under the conditions of the *Passerini* reaction, *i.e.*, stirring in CH₂Cl₂ for 2 h at 0° and then for 48 h at 25°, but no formation of depsitripeptide was observed. Only the corresponding *Passerini* products were isolated, the amino component did not take part in the reaction. Variation of the temperature was also not successful, but, on changing the solvent to different alcohols, the desired depsitripeptide **9a** was obtained, MeOH being the best solvent (*Table 5*).

Scheme 3. Model Reaction for the Ugi-4CC Reaction with 2-Cyano-2-isocyanoalkanoates 2

Table 5. Solvent Dependence of the Model Ugi-4CC Reaction with 21: Yields of 9a (see Scheme 3)

Solvent	EtOH	МеОН	PrOH	ⁱ PrOH	BuOH	ⁱ BuOH
Yield [%]	36	43	34	34	21	22

With 2 as starting material in the *Ugi*-4*CC*, the *Passerini* reaction competes successfully, depending on the solvent. With solvents other than alcohols, *e.g.*, also CHCl₃, MeCN, or AcOH, no product of an *Ugi*-4*CC* could be isolated. Such effects were described for other *Ugi*-4*CCs*, too [9]. For the model reaction carried out in MeOH, variation of temperature gave the same results as for the *Passerini* reaction. Again, this effect can be explained by the compromise between the thermolability of the 2-cyano-2-isocyanoalkanoates 2 and the necessary activation of the starting materials. The best results for the *Ugi*-4*CC* with 2 were obtained in MeOH as solvent by stirring at 0° for 2 h and then for 48 h at room temperature. Having optimized the reaction conditions, the influence of all four reaction. The results were similar: the influence of 2 was negligible, and only aliphatic aldehydes as carbonyl compounds, halogenated acetic acid derivatives, and aliphatic or benzylic primary amines gave satisfying yields (*Table 6*). This could be explained by steric hindrances of compounds differing from the above mentioned [10].

In analogy to the *Passerini* reaction, the formation of diastereoisomers was observed, which could be separated only by column chromatography (SiO₂, MeOH/CH₂Cl₂ 2:1). An attempt to hydrolyze the pure diastereoisomers **9** failed since the expected free acids were not stable; they easily decarboxylated to give the corresponding substituted cyano derivatives as exemplified by $9a \rightarrow 10$ (*Scheme 4*). These cyano derivatives could be separated by fractional crystallization from ⁱPrOH as colorless platelets, and the molecular structure of **10** was established by X-ray crystallography (*Fig.*). The relative configuration of the two chiral centers could be determined as (R*,R*) as shown for *rel-(2R)-N-[(1R)-2-(4-chlorophenyl)-1-cyanoeth-yl]-2-[(dichl oroacetyl)methylamino]-3-methylbutanamide* (**10**) (*Fig.*).

	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Ester	Yield [%]
	MeCH ₂ CH ₂	Me	Me	CH_2I	$4-Me-C_6H_4-CH_2$	^t Bu ₃	0
	MeCH ₂ CH ₂	Ph	Me	CH_2I	$4-Me-C_6H_4-CH_2$	^t Bu	0
	MeCH ₂ CH ₂	Ph	Н	CH_2I	$4-Me-C_6H_4-CH_2$	'Bu	0
	MeCH ₂ CH ₂	Me	Me	CH_2I	$4-Cl-C_6H_4-CH_2$	Et	0
	MeCH ₂ CH ₂	Me ₂ CH	Н	$PhCH_2$	$4-Cl-C_6H_4-CH_2$	'Bu	0
	$PhCH_2$	Me ₂ CH	Н	CH_2I	Et	'Bu	0
9a	MeCH ₂ CH ₂	Me ₂ CH	Н	CH_2I	Et	'Bu	27
9b	MeCH ₂ CH ₂	Me ₂ CH	Н	CH_2Br	$4 - NO_2 - C_6H_4 - CH_2$	'Bu	11
9c	MeCH ₂ CH ₂	Me ₂ CH	Н	$CHCl_2$	Et	^t Bu	56
9d	MeCH ₂ CH ₂	Me ₂ CH	Н	$CHCl_2$	$4 - F - C_6 H_4 - C H_2$	'Bu	29
9e	MeCH ₂ CH ₂	Me ₂ CH	Н	CH_2I	$4-NO_2-C_6H_4-CH_2$	Et	31
9f	Et	Me ₂ CH	Н	$CHCl_2$	$4-Me-C_6H_4-CH_2$	'Bu	25
9g	Me	Me ₂ CH	Н	$CHCl_2$	$4-Me-C_6H_4-CH_2$	'Bu	34
9h	Me	Me ₂ CH	Н	$CHCl_2$	$4-Cl-C_6H_4-CH_2$	Et	15
9i	PhCH ₂	Me ₂ CH	Н	CH_2Cl	$4-Me-C_6H_4-CH_2$	'Bu	43
9j	$PhCH_2$	Et	Н	CH_2Cl	$4-NO_2-C_6H_4-CH_2$	'Bu	29
9k	PhCH ₂	Me ₂ CH	Н	$CHCl_2$	$4-Cl-C_{6}H_{4}-CH_{2}$	'Bu	46

Table 6. Depsitripeptides 9 Synthesized by the Ugi-4CC with 2-Cyano-2-isocyanoalkanoates as Educt

Scheme 4. Decarboxylation of Depsitripeptide 9h

Conclusions. – The use of 2-cyano-2-isocyanoalkanoates **2** in the *Passerini* reaction and the *Ugi-4CC* was explored. These reactions are limited to aliphatic aldehydes, halogenated acetic acid derivatives, and, in the *Ugi-4CC*, to primary nonaromatic amines. The products of the *Ugi-4CC* were transformed to the free acids, which decarboxylated immediately. After fractional crystallization, it was possible to establish the molecular structure of one of the decarboxylated compounds; further work in this direction is in progress.

We thank BASF AG, Bayer AG, and Aventis AG, the Fonds der Chemischen Industrie, as well as the Deutsche Forschungsgemeinschaft for support of this work. We are indebted to Dr. W. Kramer and Mrs. Ute Hertle for NMR spectra, to Mr. H. Rudy for mass spectra, and to Mr. P. Weyrich for elemental analyses. Special thanks go to Mr. C. Krieger for the X-ray analysis.

Figure. Molecular structure of 10

Experimental Part

1. General. All reactions were carried out under Ar in flame-dried glassware. CH_2Cl_2 was freshly distilled from CaH; MeOH was freshly distilled from Mg; Et₂O was distilled from Na/benzophenone before use. Column chromatography (CC): silica gel (60–200 mesh) from *Merck KGaA*. M.p.: *Reichert* melting-point microscope; uncorrected. IR Spectra: KBr pellets; *Perkin-Elmer PE-1600-FT-IR* spectrometer; \tilde{v} in cm⁻¹. ¹H-NMR Spectra: at 250.13 MHz with *Bruker WM-250* spectrometer, at 360.12 MHz with *Bruker AM-360* spectrometer; δ in ppm rel. to SiMe₄, *J* in Hz. ¹³C-NMR Spectra: at 62.89 and 90.56 MHz with the same spectrometers. MS: *Varian MAT-311-A* spectrometer at 70 eV; *m*/z (rel. %). Elemental analyses: *Foss-Heraeus Vario EL*.

2. Alkyl 2-Cyano-2-isocyanoalkanoates (2a-1). Prepared according to [1]. All previously unknown 2-cyano-2-isocyanoalkanoates gave the characteristic physical data.

3. Depsidipeptides **5a** – **ah**. 3.1. General Procedure. To a soln. of **2** in CH₂Cl₂, the aldehyde and the acid (alkanoate/aldehyde/acid 1.1.5:1.5) are added under stirring at 0°. Solid components are dissolved in CH₂Cl₂ or in CH₂Cl₂/MeOH 3:1. After 20 min, the cooling bath is removed and the soln. stirred for 2 days. After evaporation the residue is dissolved in CH₂Cl₂ (10 ml), the soln. washed with sat. NaHCO₃ soln. (2 × 25 ml) and H₂O (20 ml), dried (Na₂SO₄ sicc.), and evaporated, and the remaining oil fractionated by crystallization from Et₂O. Then, the crystals were dissolved in CH₂Cl₂ and purified by CC (silica gel, CH₂Cl₂). Evaporation followed by crystallization yield pure depsidipeptides as pairs of diastereoisomers.

3.2. Exemplary Data for Depsidipeptides. 3.2.1. Ethyl a-([2-[(Chloroacetyl)oxy]-3-methyl-1-oxobutyl]amino)-a-cyano-4-methylbenzenepropanoate (**5b**). From ethyl a-cyano-a-isocyano-(4-methylbenzenepropanoate (**2b**; 894 mg, 3.7 mmol), 2-methylpropanal (**4**; 400 mg, 5.6 mmol, 0.51 ml), and chloroacetic acid (**3**; 528 mg, 5.6 mmol) in CH₂Cl₂/MeOH (30 ml). Crystallization gives 383 mg (26%) of a mixture of diastereoisomers (cf. ¹³C-NMR). M.p. 128°. IR (KBr): 3399*x*, 2972*x*, 2249*m*, 1755*x*, 1794*s*, 1683*x*, 1515*s*, 1471*m*, 1399*m*, 1257*s*, 1050*x*, 1015*s*, 926*m*, 794*s*, 598*m*. ¹H-NMR (CDCl₃): 0.91 (*m*, *M*₂CH), 1.26 (*t*, *M*₂CH₂O); 2.34 (*s*, *M*₂C₆H₄); 2.58 (*m*, Me₂CH); 3.32 (*d*, ²*J* = 15.1, 1 H, C₆H₄CH₂); 3.55 (*d*, ²*J* = 15.0, 1 H, C₆H₄CH₂); 3.99 (*d*, ²*J* = 10.1, 1 H, ClH₂CO); 4.16 (*d*, ²*J* = 10.9, 1 H, ClCH₂CO); 4.28 (*m*, MecH₂O); 5.13 and 5.20 (2*d*, ³*J* = 3.5 and 4.2, Me₂CHCH); 6.82 and 6.84 (2*s*, NH); 7.08 – 7.28 (*m*, 4 arom. H). ¹³C-NMR (CDCl₃): 13.80, 13.85 (*M*₂CH₂O); 16.70, 16.81 (1 Me of Me₂CH); 18.33, 18.36 (1 Me of Me₂CH); 12.11, 21.13 (*M*₂C₆H₄); 30.91, 31.01 (Me₂CH); 16.77, 4.052 (ClCH₂CO); 41.12, 41.41 (C₆H₄CH₂); 56.89, 57.26 (C(*a*)); 63.96, 64.19 (COOCH₂Me); 78.77, 78.88 (Me₂CHCH); 115.71, 115.87 (CN); 128.19, 128.23, 129.76, 129.79, 129.86, 129.92, 138.65, 138.69 (6 arom. C); 155.38, 165.48 (CO); 166.06, 166.18 (CO); 168.32, 168.45 (CO). MS: 408 (2.4, *M*⁺⁺), 215 (36.92, $[M - NHCOCH(OCOCH_2Cl)CHMe_2]^+$), 105 (100, $MeC_6H_4CH2^+$), 77 (10.23, $[CICH_2CO]^+$), 55 (10.08, $C_4H_9^+$). Anal. calc. for $C_{20}H_{25}ClN_2O_5$: C 58.75, H 6.16, N 6.86; found: C 58.85, H 6.45, N 6.74.

3.2.2. tert-*Butyl* α -*Cyano-* α -([2-[(dichloroacetyl)oxy]-3-methyl-1-oxobutyl]-amino)-4-methylbenzenepropanoate (**5r**). From tert-butyl α -cyano- α -isocyano-4-methylbenzenepropanoate (**2a**; 750 mg, 2.8 mmol), 2methylpropanal (**4**; 328 mg, 4.2 mmol, 0.2 ml), and dichloroacetic acid (542 mg, 4.2 mmol, 0.85 ml) in CH₂Cl₂/ MeOH (20 ml). Crystallization followed by CC gives 439 mg (33%) of diastereoisomer I and 335 mg (25%) of diastereoisomer II of **5r**.

Diastereoisomer I: M.p. 138°. IR (KBr): 3294s, 2976s, 2733s, 2245m, 1753s, 1727s, 1676s, 1513s, 1280s, 1151s, 1014s, 939m, 814s, 756s, 674m. ¹H-NMR (CDCl₃): 1.01 (d, ${}^{3}J = 6.7$, Me_2 CH); 1.53 (s, 'Bu); 2.32 (s, $MeC_{6}H_{4}$); 2.40 (m, Me₂CH); 3.29 (d, ${}^{2}J = 13.7$, 1 H, $C_{6}H_{4}CH_{2}$); 3.65 (d, ${}^{2}J = 13.8$, 1 H, $C_{6}H_{4}CH_{2}$); 5.25 (d, ${}^{3}J = 6.8$, Me₂CHCH); 5.88 (s, Cl₂CH); 6.79 (s, NH); 7.05–7.27 (m, 4 arom. H). ¹³C-NMR (CDCl₃): 16.54 (1 Me of Me₂CH); 18.32 (1 Me of Me₂CH); 21.05 ($MeC_{6}H_{4}$); 27.65 (Me_{3}); 31.18 (Me_{2} CH); 40.45 ($C_{6}H_{4}CH_{2}$); 57.03 ($C(\alpha)$); 63.77 (Cl₂CH); 79.92 (Me₂CHCH); 86.32 (Me₃C); 115.87 (CN); 128.41, 129.57, 129.91, 138.35 (6 arom. C); 162.68 (CO); 163.85 (CO); 167.51 (CO). MS: 470 (0.57, M^+), 187 (42.04, MeC₆H₄CH₂C(CN)COO⁺), 105 (100, MeC₆H₄CH₂⁺), 57 (43.95, C₄H₉⁺). Anal. calc. for C₂₂H₂₈Cl₂N₂O₅: C 56.06, H 5.99, N 5.94; found: C 55.97, H 6.13, N 5.92.

Diastereoisomer II: Purity 95%. M.p. 102° . ¹H-NMR (CDCl₃): 1.10 (*d*, ³*J* = 6.8, *Me*₂CH); 1.60 (*s*, ⁵Bu); 2.29 (*s*, *Me*C₆H₄); 2.46 (*m*, Me₂CH); 3.36 (*d*, ²*J* = 13.0, 1 H, C₆H₄CH₂); 3.77 (*d*, ²*J* = 14.1, 1 H, C₆H₄CH₂); 5.18 (*d*, ³*J* = 6.9, Me₂CHCH); 6.03 (*s*, Cl₂CH); 6.82 (*s*, NH); 7.03 – 7.21 (*m*, 4 arom. H). ¹³C-NMR (CDCl₃): 16.58 (1 Me of Me₂CH); 18.09 (1 Me of Me₂CH); 21.13 (*Me*C₆H₄); 27.69 (*Me*₃C); 31.23 (Me₂CH); 40.81 (C₆H₄CH₂); 57.54 (C(*a*)); 64.02 (Cl₂CH); 79.79 (Me₂CHCH); 86.05 (Me₃C); 116.05 (CN); 128.34, 129.62, 130.01, 138.54 (6 arom. C); 162.89 (CO); 163.92 (CO); 167.63 (CO).

3.3. Other Synthesized Depsidipeptides. They show physical data comparable to those given in 3.2.

4. Depsitripeptides 9a-k. 4.1. General Procedure. To a soln. of the amine in MeOH or CH₂Cl₂/MeOH 1:3, the aldehyde is added at 0° and the soln. stirred for 10 min. The acid in MeOH is added, followed, after 2 min, by 2 in a mixture of CH₂Cl₂ (3 ml) and MeOH (10 ml) (ester/aldehyde/amine/acid 1:1.5:1.5:1.5). After 2 h, the cooling bath is removed and the soln. stirred at r.t. for 2 days. The solvent is evaporated and AcOEt (10 ml) is added. The org. phase is washed twice with NaHSO₃ soln. (25 ml) and H₂O (25 ml), dried (Na₂SO₄), and evaporated. The obtained colorless oil is dissolved in Et₂O (10 ml) to give the diastereoisomers by crystallization. The mother liquor contains further product, which is accessible by CC (SiO₂, AcOEt/hexanes 9:1). Pure diastereoisomers were obtained after CC (SiO₂, MeOH/CH₂Cl₂ 2:1).

4.2. Exemplary Data for Depsitripeptides. tert-Butyl α -Cyano- α -([2-[(dichloroacetyl)ethylamino]-3-methyl-1-oxobutyl/amino)-4-methylbenzenepropanoate (9f). From tert-butyl a-cyano-a-isocyano-4-methylbenzenepropanoate (2a; 700 mg, 2.4 mmol) 2-methylpropanal (4; 259 mg, 3.6 mmol, 0.21 ml), 2м EtNH₂ (162 mg, 3.6 mmol, 1.8 ml) in MeOH and dichloroacetic acid (464 mg, 3.6 mmol, 0.73 ml) in MeOH (50 ml): 288 mg (25%) of a mixture of both diastereoisomers. M.p. 164°. IR (KBr): 3262s, 2968s, 2252m, 1750s, 1692s, 1649s, 1539s, 1443m, 1368s, 1151s, 1035s, 806s, 735s.¹H-NMR (CDCl₃): 0.86, 0.89 (d, ${}^{3}J = 5.9, Me_{2}$ CH); 1.26 (t, ${}^{3}J = 6.9, Me_{2}$ CH); 1.26 (t, $MeCH_2N$; 1.43 (s, 'Bu); 2.34 (s, MeC_6H_4); 2.58 (m, Me_2CH); 3.30 (d, ²J = 13.2, 1 H, $C_6H_4CH_2$); 3.42 (d, ²J = 13.2, 1 H, $C_6H_4CH_2$); 3.4 13.4, 1 H, $C_6H_4CH_2$; 3.47 (*m*, MeCH₂N); 3.89 (*d*, 1 H, ${}^{3}J$ = 6.5, Me₂CHCH); 6.25 (*s*, Cl₂CH); 7.13 - 7.26 (m, 4 arom. H); 7.86 (s, NH). ¹³C-NMR (CDCl₃): 14.93, 15.16 (MeCH₂); 18.62, 18.87 (1 Me of Me₂CH), 19.60, 19.87 (1 Me of Me₂CH); 20.96, 21.14 ($MeC_{6}H_{4}$); 26.63, 26.96 (Me₂CH); 27.59, 27.67 ($Me_{3}C$); 39.97, 40.81 (MeCH₂N); 41.38, 41.53 (C₆H₄CH₂); 58.30, 58.69 (C(α)); 64.55, 64.70 (Cl₂CH); 76.21, 76.39 (Me₂CHCH); 85.00, 85.27 (Bu); 116.42, 116.52 (CN); 128.27, 128.46, 129.55, 129.62, 130.13, 130.29, 138.18, 138.29 (6 arom. C); 164.25, 164.38 (CO); 165.82, 165.87 (CO); 169.64, 169.76 (CO). MS: 240 (23.60, Cl₂CHCON(CH₂Me)CH-(CO)CH(Me₂), Cl₂CHCON(CH₂Me)CH(CO)CHMe[†], 212 (36.59, Cl₂CHCON(CH₂Me)CHCHMe[†]), 105 (100, MeC₆H₄CH⁺₂), 100 (23.94, COOCMe⁺₃), 57 (62.96, C₄H⁺₉). Anal. calc. for C₂₄H₃₅Cl₂N₃O₅: C 55.82, H 6.83, N 8.14; found: C 56.02, H 6.64, N 8.23.

After CC, one of the diastereoisomers is obtained in pure form: 140 mg (11%). M.p. 178°. ¹H-NMR (CDCl₃): $0.86 (d, {}^{3}J = 5.7, Me_{2}CH)$; $1.25 (t, {}^{3}J = 7.0, MeCH_{2}N)$; $1.42 (s, {}^{B}u)$; $2.33 (s, MeC_{6}H_{4})$; $2.57 (m, Me_{2}CH)$; $3.28 (d, {}^{2}J = 13.4, 1 H, C_{6}H_{4}CH_{2})$; $3.40 (d, {}^{2}J = 13.3, 1 H, C_{6}H_{4}CH_{2})$; $3.47 (m, MeCH_{2}N)$; $3.91 (d, {}^{3}J = 6.6, Me_{2}CHCH)$; $6.25 (s, Cl_{2}CH)$; 7.12 - 7.25 (m, 4 arom. H); 7.87 (s, NH). ¹³C-NMR (CDCl₃): 14.93 (MeCH_{2}N); $18.62 (1 Me of Me_{2}CH)$; $19.60 (1 Me of Me_{2}CH)$; $21.14 (MeC_{6}H_{4})$; $26.63 (Me_{2}CH)$; $27.59 (Me_{3}C)$; $40.81 (MeCH_{2}N)$; $41.53 (C_{6}H_{4}CH_{2})$; $58.30 (C(\alpha)$); $64.55 (Cl_{2}CH)$; $76.21 (Me_{2}CHCH)$; $85.27 (Me_{3}C)$; 116.52 (CN); 128.27, 129.55, 130.29, 138.18 (arom. C); 164.25 (CO); 165.87 (CO); 169.76 (CO).

4.3. Other Synthesized Depsitripeptides. They show physical data comparable to those given in 4.2.

5. rel-(2R)-N-[(1R)-2-(4-Chlorophenyl)-1-cyanoethyl]-2-[(dichloroacetyl)methylamino]-3-methylbutanamide (10). Ethyl α -cyano- α -([2-[(dichloroacetyl)methylamino]-3-methyl-1-oxobutyl]amino)-chlorobenzenepropanoate (9h; 500 mg, 1.1 mmol) in acetone (50 ml) is treated with 5% aq. HCl soln. (20 ml) at 0° for 1 h. The soln. is neutralized and extracted with Et₂O (3 × 50 ml), the extract dried (Na₂SO₄) and evaporated, and the obtained mixtures of two diastereoisomers (364 mg, 80%) submitted to fractional crystallization from EtOH: 117 mg (39%) of pure 10. Colorless platelets. M.p. 138°. IR (KBr): 3260s, 2965s, 2249m, 1761s, 1687s, 1652s, 1541m, 1418s, 1260m, 1142s, 1092s, 1017m, 888m, 807m. ¹H-NMR (CDCl₃): 1.02 (d, ³J = 6.13, Me₂CH); 2.06 (m, Me₂CH); 3.16 (s, MeN); 3.16 (d, ²J = 12.38, 1 H, ClC₆H₄CH₂); 3.13 (m, CHCN); 3.18 (d, ²J = 12.79, 1 H, ClC₆H₄CH₂); 4.81 (d, ³J = 6.48, Me₂CHCH); 6.09 (s, Cl₂CH); 7.21 – 7.68 (m, 4 arom. H); 8.76, 8.81 (2s, NH). ¹C-NMR (CDCl₃): 17.93 (1 Me of Me₂CH); 18.14 (1 Me of Me₂CH); 31.16 (Me₂CH); 32.29 (MeN); 35.87 (CHCN); 40.14 (ClC₆H₄CH₂); 58.23 (Me₂CHCH); 68.22 (Cl₂CH); 121.96 (CN); 127.29 – 132.03 (6 arom. C); 163.11 (CO); 163.38 (CO). MS: 405 (1.38, M⁺), 224 (13.09, Cl₂CHCON(Me)CH(CO)CHMe₂), 196 (100.0, Cl₂CHCONCHCHCHMe₂⁺), 125 (21.04, Cl₂CHCON⁺), 83 (27.03, Cl₂CH⁺). Anal. calc. for C₁₇H₂₀³⁵Cl₃N₃O₂: C 50.45, H 5.00, N 10.38; found: C 50.51, H 4.89, N 10.45.

For crystallographic data of 10, see Table 7.

Table 7.	Crystallo	graphic	Data	of 10
		() · · · · · ·		

Formula	$C_{17}H_{20}Cl_3N_3O_2$
Molecular mass	404.73
Crystal description	platelet
Crystal size/mm	0.30 imes 0.20 imes 0.05
Crystal system	triclinic
Space group	P1 (#2)
a/Å	11.025(5)
b/Å	11.821(5)
c/Å	18.022(5)
al°	80.54(3)
$eta l^\circ$	80.12(1)
$\gamma /^{\circ}$	62.26(1)
V/Å ³	2039(1)
Ζ	4
$D_{\rm calc}/{\rm g}\cdot{\rm cm}^{-3}$	1.319
F ₀₀₀ /e	840
$\mu(MoK_a)/cm^{-1}$	4.642
Radiation	μ (Mo K_a) (λ 0.7107 Å)
Scanning technique	ω -2 θ
Unique reflections measured	8001 up to $(\sin\theta/\lambda)_{\text{max}} = 0.62 \text{ Å}^-$
Structure solution	direct methods (SIR)
H-Atoms	located and refined isotropically
Refinement: full-matrix least-squares, function minimized	$\Sigma w(\Delta F)^2$
Anomalous dispersion	all non-H-atoms ^a)
Observed refls. included	4518 with $I \ge 3.0\sigma(I)$
Parameters refined	539
R	0.053 ^b)
$R_{ m w}$	0.057 ^b)
Convergence, largest shift $(\Delta/\sigma)_{max}$	0.08
High peak in final diff. map. $(\Delta \rho)_{max}/e \cdot Å^3$	0.35(5)

^a) Scattering factors and anomalous dispersion corrections were taken from [11].

^b)
$$R = \frac{\sum ||F_{\text{ibs}}| - |F_{\text{calc}}||}{\sum |F_{\text{obs}}|}, R_{\text{w}} = \sqrt{\frac{\sum w ||F_{\text{obs}}| - |F_{\text{calc}}||^2}{\sum w |F_{\text{obs}}|^2}}, w = [\delta(F)^2 + (0.03F_{\text{obs}})^2]^{-1}$$

2230

Helvetica Chimica Acta - Vol. 85 (2002)

REFERENCES

- [1] M. Bergemann, R. Neidlein, Synthesis 1996, 975.
- [2] M. Bergemann, R. Neidlein, Synthesis 1998, 1437.
- [3] M. Bergemann, R. Neidlein, Helv. Chim. Acta 1999, 82, 909.
- [4] M. Passerini, Gazz. Chim. Ital. 1921, 5111, 126; M. Passerini, Gazz. Chim. Ital. 1921, 5111, 181.
- [5] I. Ugi, Angew. Chem. 1982, 94, 826.
- [6] M. Passerini, Gazz. Chim. Ital. 1925, 54, 529; R. Neidlein, Angew. Chem. 1964, 76, 440; R. Neidlein, Angew. Chem. 1964, 76, 500; J. W. McFarland, J. Org. Chem. 1963, 28, 2179; R. Neidlein, Arch. Pharm. 1966, 299, 603; R. H. Baker, A. H. Schlesinger, J. Am. Chem. Soc. 1945, 67, 1499; R. H. Baker, D. Stanonis, J. Am. Chem. Soc. 1951, 73, 699.
- [7] I. Ugi, C. Steinbrückner, Chem. Ber. 1961, 94, 734; I. Ugi, 'Isonitrile Chemistry', Academic Press, New York-London, 1971, 145.
- [8] I. Ugi, J. Prakt. Chem. 1997, 339, 499.
- [9] I. Ugi, D. Marquarding, R. Urban, 'Chemistry and Biochemistry of Amino Acids, Peptides and Proteins', Vol. 6, New York, 1982, p. 245.
- [10] I. Ugi, G. Kaufhold, Justus Liebigs Ann. Chem. 1967, 709, 11.
- [11] 'International Tables for X-Ray Crystallography', Vol. IV, Kynoch Press, Birmingham, England, 1974.

Received November 26, 2001